High-order central ENO finite-volume scheme for ideal MHD
نویسندگان
چکیده
منابع مشابه
High-order central ENO finite-volume scheme for ideal MHD
A high-order accurate finite-volume scheme for the compressible ideal magnetohydrodynamics (MHD) equations is proposed. The high-order MHD scheme is based on a central essentially non-oscillatory (CENO) method combined with the generalized Lagrange multiplier divergence cleaning method for MHD. The CENO method uses k-exact multidimensional reconstruction together with a monotonicity procedure t...
متن کاملHigh-Order Central ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-Sphere Grids
A high-order central essentially non-oscillatory (CENO) finite-volume scheme is developed for the compressible ideal magnetohydrodynamics (MHD) equations solved on threedimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main technical challenge in extending the 2D meth...
متن کاملFinite Volume Central Schemes for 3-dimensional Ideal MHD
We present second-order accurate central finite volume methods adapted here to three-dimensional problems in ideal magnetohydrodynamics. These methods alternate between two staggered grids, thus leading to Riemann solver-free algorithms with relatively favorable computing times. The original grid considered in this paper is Cartesian, while the dual grid features either Cartesian or diamond-sha...
متن کاملHigh-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedr...
متن کاملA High-Order Central ENO Finite-Volume Scheme for Three-Dimensional Turbulent Reactive Flows on Unstructured Mesh
High-order discretization techniques offer the potential to significantly reduce the computational costs necessary to obtain accurate predictions when compared to lower-order methods. However, efficient, universallyapplicable, high-order discretizations remain somewhat illusive, especially for more arbitrary unstructured meshes and for large-eddy simulation (LES) of turbulent reacting flows. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2013
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2013.04.040